Tissue Classification Using Efficient Local Fisher Discriminant Analysis

نویسندگان

  • Ziqiang WANG
  • Xia SUN
  • Lijun SUN
  • Xu QIAN
چکیده

A novel scatter-difference-based local Fisher discriminant analysis(SDLFDA) algorithm for tissue classification is proposed in this paper. SDLFDA explicitly considers the local manifold structure and interclass discrimination in gene expression data space. By using SDLFDA, each gene expression data can be projected into a lower-dimensional discriminative feature space. In addition, SDFLDA reduces the computational cost through QR decomposition. Experimental results demonstrate the effectiveness and efficiency of the proposed SDLFDA algorithm. Streszczenie. W artykule przedstawiono algorytm analizy lokalnym wyróżnikiem Fisher’a opartym na różnicach rozproszenia (ang. SDLFDA), służący do klasyfikacji tkanek. Proponowana metoda pozwala na zmniejszenie wymiarowości przestrzeni wyróżnika, określającego dane GXD, a także redukcję kosztów obliczeniowych dzięki dekompozycji QR. Wyniki badań eksperymentalnych potwierdzają skuteczność i sprawność algorytmu. (Efektywna analiza lokalnego wyróżnika Fisher’a do klasyfikacji tkanek).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Cross Concept Local Fisher Discriminant Analysis for Image Classification

Distance metric learning is widely used in many visual computing methods, especially image classification. Among various metric learning approaches, Fisher Discriminant Analysis (FDA) is a classical metric learning approach utilizing the pair-wise semantic similarity and dissimilarity in image classification. Moreover, Local Fisher Discriminant Analysis (LFDA) takes advantage of local data stru...

متن کامل

Dimensionality Reduction Using Kernel Pooled Local Discriminant Information

We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and compare it against several competing techniques: generalized Fisher discriminant analysis (GDA) and kernel principal components analysis (KPCA) in classification problems. We evaluate the classification performance of the ...

متن کامل

Multi-Group Classification Using Interval Linea rProgramming

  Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis has recently attracted the researchers’ interest. This study evaluates multi-group discriminant linear programming (MDLP) for classification problems against well-known methods such as neural networks and support vector machine. MDLP is less compli...

متن کامل

Efficient image signatures and similarities using tensor products of local descriptors

In this paper, we introduce a novel image signature effective in both image retrieval and image classification. Our approach is based on the aggregation of tensor products of discriminant local features, named VLAT (vector of locally aggregated tensors). We also introduce techniques for the packing and the fast comparison of VLATs. We present connections between VLAT and methods like kernel on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013